SWINOMISH CRAB ABUNDANCE MONITORING PROGRAM
LIGHT TRAP METHODS

Claire E. Cook, Sarah K. Grossman, and Julie S. Barber
Table of Contents

Introduction .. 3

Methods .. 4
 Design and construction .. 5
 Deployment .. 5
 Sample retrieval .. 5
 Sample processing ... 6
 Subsampling .. 7
 Citizen scientist monitoring program .. 7

Step-by-step construction .. 8
 Main body .. 8
 Foam floats .. 9
 Cod end .. 9
 Light housing ... 9
 Light unit .. 10

Acknowledgements .. 10

References ... 11

Appendix A: List of materials and estimated costs .. 13

Appendix B: Light trap monitoring datasheet .. 15

Appendix C: Citizen scientist step-by-step guide .. 17

Appendix D: Citizen scientist light trap report ... 19

Front cover photo: Sarah K. Grossman
List of Figures

Figure 1: Light trap diagram.. 5
Figure 2: Measurement locations for carapace width, carapace height, and total height on megalopae 6
Figure 3: Measurement locations for carapace width and height on juvenile instars 7
Figure 4: Main body of trap with holes drilled in the side and bottom.. 8
Figure 5: Main body of trap with foam float attached and cod end pieces staged for assembly 8
Figure 6: Fully assembled light trap ... 9
Figure 7: Light housing consisting of Pelican box, bulkhead fitting, and capped PVC pipe............... 9
Figure 8: Fully assembled light unit with 12V lithium-ion battery and programmable timer 10
SWINOMISH CRAB ABUNDANCE MONITORING PROGRAM
LIGHT TRAP METHODS

Claire E. Cook, Sarah K. Grossman*, and Julie S. Barber

Fisheries Department, Swinomish Indian Tribal Community, 11426 Moorage Way, La Conner WA, 98257
* Corresponding author: sgrossman@swinomish.nsn.us

INTRODUCTION

Many marine invertebrates and fishes use larval dispersal to reproduce. They have a two-phase life cycle in which planktonic larvae are dispersed in the water column before being transported to adequate rearing or settlement areas in nearshore environments (Pineda 1994, Cowen & Sponaugle 2009). For many marine broadcast spawners, the population dynamics of later life history stages are influenced by the recruitment and survival of pelagic developmental stages (Shanks 1983, Miller & Shanks 2004, Cowen & Sponaugle 2009). Thus, it is of particular interest to gain understanding of the role that larval processes play in determining community structure.

Larval phases of marine invertebrates and fishes have traditionally been sampled with discrete vertical or horizontal larval tows. Although these techniques are effective at catching early stage zoea, they have been shown to be less efficient at sampling strong-swimming and scarce organisms, specifically late-stage (megalopae) crustacean larvae (Hickford & Schiel 1999, Porter et al. 2008, Pineda et al. 2010). Additionally, larval tows are difficult to conduct in shallow nearshore environments and are limited in their ability to simultaneously sample across broad spatial and temporal scales.

These limitations led to the development of larval sampling devices called light traps. Light traps were originally designed to quantify the spatial and temporal patchiness in abundances of aquatic insects (Baylor & Smith 1953, Hungerford et al. 1955) and larval fishes (Faber 1981, Gregory & Powles 1985, Doherty 1987), but were soon adapted to study the larval abundances of a variety of marine invertebrates (McLeod & Costello 2017), including decapod crustaceans (Shanks & Roegner 2007, Herter & Eckert 2008, Sigurdsson et al. 2014). They function as active samplers and depend on the positive phototropism of organisms towards artificial illumination. They can be deployed throughout larval recruitment periods and are thus less affected by conditions that might temporarily affect larval distribution, such as wind and tidal forcing (Porter et al. 2008, Pineda et al. 2010, Sigurdsson et al. 2014). In particular, light traps have become a useful tool for studying recruitment dynamics of marine decapod crustaceans because of the high resolution temporal data and targeted sampling of late-stage (megalopal) larval abundance.

Most larval crab recruitment studies in the coastal waters of the west coast of the United States have focused on the commercially-important Dungeness crab (Metacarcinus magister). Monitoring larval recruitment of Dungeness crab with light traps has proven to be an effective method for discerning the relationship between settlement and oceanographic conditions, as well as the subsequent variation in commercial harvest in Oregon (Shanks & Roegner 2007, Shanks et al. 2010, Shanks 2013). Light trap research in Coos Bay, OR (Miller & Shanks 2004, Roegner et al. 2007), Willapa Bay, WA (Roegner et al. 2003), and Glacier Bay,
AK (Herter & Eckert 2008) has provided further evidence of the physical and oceanographic mechanisms that modulate Dungeness crab megalopal supply between coastal and estuarine environments.

Although larval dynamics of Dungeness crab on the Pacific coast have been well-studied, including light trap work, very little is known about larval crab dynamics in the inland waters of Washington State. The majority of work conducted on larval Dungeness crab in Washington has been limited to Grays Harbor and Willapa Bay, large coastal estuaries with markedly different oceanographic regimes than the southern Salish Sea. It remains unknown if these results are analogous to what occurs within southern Salish Sea populations, especially given the fact that distinctly different cohorts have been identified between coastal and Puget Sound populations (Dinnel et al. 1993, Jackson & O’Malley 2017).

The Swinomish Indian Tribal Community (SITC) Crab Abundance Monitoring Program (CAMP) seeks to fill extensive gaps in our knowledge of early life history phases of Dungeness crab in Washington’s inland waters. Given these gaps, it is essential to develop a modern baseline of biological and physical metrics in the region so we can determine potential limitations to adult populations and assess the need for adaptive management through time. Thus, our program focused on collecting data on the megalopal and juvenile instar life history stages of this species using light traps and intertidal quadrat sampling, respectively.

This document is intended to provide standardized survey methods to potential collaborators throughout the monitoring network. Light trap catch efficiency has been shown to vary with light trap design, making it difficult to compare studies with different designs (Meekan et al. 2001). Consequently, it is critical that collaborators utilize a similar light trap design and survey methods. The SITC light trap design is modified from traps used successfully in larval crab research throughout coastal waters on the west coast of the United States, and has proven to be extremely efficient at sampling larval decapod crustaceans (Roegner et al. 2003, Miller & Shanks 2004, Herter & Eckert 2008).

SITC chooses to collect a variety of biometric and physical data (e.g., carapace dimensions, continuous salinity and temperature data) in addition to Dungeness crab megalopae and instar abundance. While these methods can easily be adapted to address a variety of research goals, at a minimum we ask that collaborators in the region collect data on Dungeness crab megalopae and instar abundances. Baseline data provided by this project will be crucial when examining whether fluctuations in adult Dungeness crab populations are due to limitations in habitat, larval supply, or because of other factors such as competition or density-dependent mortality. An increased understanding of these potential bottlenecks will inform prioritization of future restoration and management of Dungeness crab rearing habitat.

METHODS

Light traps are deployed at nearshore locations to evaluate ingress of larval Dungeness crab across Swinomish management regions. The traps are affixed to structures (e.g., dock, pier, or mooring ball) and float at the surface of the water throughout the Dungeness crab larval recruitment periods from April to mid-September. Samples are collected every one to two days and Dungeness crab larvae and juvenile instars are sorted from samples and enumerated. Instars are occasionally present in the light trap as a result of megalopae molting while in the trap. The duration of time that the light is programed to be illuminated determines the hours that the trap is actively fishing. Results are standardized by catch per unit hour.
Design and construction
Light traps are constructed from 19 liter translucent plastic bottles (e.g., water bottles; Figure 1). Crab larvae gain entry through six translucent plastic funnels (10 cm to 1.5 cm taper) fitted into the main body of the trap. Illumination is provided by LED light strips (see Appendix A for a list of materials, vendors, and estimated costs) powered by a 12 volt rechargeable lithium-ion battery and sealed in a waterproof housing. A timer is programmed to turn the lighting unit on at sunset and off at sunrise (rounded to the nearest half-hour). A 6 Ah battery is used to power the lighting unit for one-night deployments, and an 11 Ah battery is used for two-night deployments. Batteries are changed every one to two days to ensure constant illumination during the night. The bottom of the trap is capped with a removable PVC cod end fitted with 250 µm mesh. Foam floats ensure that the trap floats at the surface of the water and weights attached to the bottom of the cod end maintain the trap in an upright position. An eye-bolt affixed to the bottom of the cod end provides an attachment point for additional monitoring equipment, such as temperature and conductivity sensors.

Deployment
Light traps are moored from docks in at least 1.5 meters of water to allow the trap to float freely in extreme low tides. A coiled steel cable is used to attach the trap to a dock or piling via the plastic handle on the translucent plastic bottle. A second line is attached to the plastic handle on the bottle and secured to a dock cleat, collar, or other feature using a stainless steel carabiner. The second line puts tension on the coiled steel cable and allows the trap to be positioned away from the dock. Buoys float the trap vertically in the water column with the entrance funnels within 1 m of the surface. Each trap lighting unit is equipped with a fully-charged battery and the timer is manually programmed to turn the LED light on at sunset and off at sunrise. Water movement through the funnel openings allows fishes and invertebrates to stay alive until they are removed from the trap the following day.

Sample retrieval
Securing lines are removed from the supports and the trap is pulled onto the dock, being careful to maintain its vertical position. As the trap is pulled from the water, the contents are filtered through the mesh and concentrated in the cod end. Once on the dock, the foam lid is removed from the top of the trap and the waterproof lighting unit is unstrapped and removed. Local seawater is used to rinse any remaining organisms into the cod end. The cod end is removed and its contents are transferred to a tub for processing.

Dungeness crab larvae and instars are sorted from the sample and enumerated. Carapace width, carapace height, and total height of a subset of 30 Dungeness crab megalopae and 30 instars are measured and
recorded each week (Figures 2 and 3). Measurements can be taken in the field once one is familiar with species identification and measurement protocol (see Sample processing section). Other species of interest are recorded and, when possible, enumerated. If species cannot be identified or counted at the field site, they can either be transferred to plastic jars and kept on ice or frozen until laboratory processing or preserved in 95% non-denatured ethanol for future verification and quality control measures. The rest of the organisms can be returned to the water once they have been counted and recorded. A fully charged battery is traded for the existing battery in the waterproof lighting unit. The lighting unit is re-installed and the foam lid is strapped onto the trap. The trap is secured to the dock and the time of deployment is recorded.

Physical and environmental data are recorded in addition to counts of Dungeness crab megalopae and instars and other species of interest. Information on weather and current conditions are useful when considering the physical drivers of larval pulses. It is also important to record any complications with the trap, as this information can help determine the quality of the data collected. For instance, SITC staff note the level of charge on the existing battery in order to determine if the light turned on and the trap indeed fished overnight. An example of our light trap monitoring datasheet is included in Appendix B.

Sample processing

Measurements of carapace width, carapace height, and total height are measured using a metric dial caliper (precision, 0.1mm) each week on a subset of 30 Dungeness crab megalopae and 30 juvenile instars per site. Measurements of carapace width and height are used to differentiate between early and late cohorts (Dinnel et al. 1993).

Megalopa carapace width is measured at the widest point of the carapace while carapace height is measured from the back of the carapace to the tip of the rostral spine with calipers (Figure 2). Total height is measured from the rostral spine to the posterior spine and is only collected on megalopae (Figure 2). Instar carapace

![Figure 2. Measurement locations for carapace width, carapace height, and total height on megalopae.](image)
width is measured anterior of the 10th antero-lateral spines, while carapace height is measured from the back of the carapace to the tip of the rostrum (Figure 3).

Subsampling
Subsampling to estimate larval abundance is necessary if the Dungeness crab megalopae appear to be too numerous to count (>500 megalopae). Some choose to subsample by mass (Shanks et al. 2010), but for the purposes of this program, it was determined that subsampling by volume was more efficient.

To subsample by volume, first dilute the sample to a known volume using a large graduated vessel (e.g. 4L graduated bucket). Thoroughly mix to homogenize the sample and transfer triplicate aliquots (e.g. 200 mL) into sorting tubs to be enumerated. Count and record the number of Dungeness crab and other species of interest in each of the three subsamples. Determine the average count per subsample volume and ensure that each of the subsample counts are within 90% of the average. If they are not, transfer and count additional subsamples until they fall within the 90% range. Once the subsamples meet the criteria, multiply the average number of crab per subsample volume by the total sample volume to get an estimate of the total number of crab in the sample. An example of a table used to estimate larval abundance via subsampling can be found on the second page of the light trap monitoring datasheet in Appendix B.

Citizen scientist monitoring program
Continuous deployment of the light traps throughout the Dungeness crab larval recruitment period (April to mid-September) requires the traps be checked and the batteries changed at least every two days. This is an intensive time commitment and would not be possible without the help of citizen scientist volunteers.

Teams of volunteers adopt a light trap and collect the sample every Saturday. Each team is given a clipboard and datasheet, sample processing tub, sample collection jars, and a two-day battery and wall charger. They are instructed to check the trap at any point on Saturday, take note of the remaining charge on the used battery, trade the existing battery for a fully charged battery, and collect any crab megalopae or instars that are present in the sample. Volunteers keep the samples in their freezers and SITC staff collect them every few weeks. Some volunteers are comfortable identifying and sorting the Dungeness crab megalopae from the other species present, while others prefer to collect all the megalopae and allow SITC staff to sort and count the Dungeness crab at a later date. To date, there have been no issues identifying crab to the species level in the frozen samples.

Volunteer support materials, including a step-by-step guide to checking light traps and the citizen scientist light trap report, can be found in Appendices C and D.
STEP-BY-STEP CONSTRUCTION

Please note that the following construction description is written using the Imperial System of Measurement, not the metric system. This was done in order to facilitate ease of light trap construction in the United States by collaborators who are located throughout Washington waters. Once all supplies are gathered, it takes roughly six hours to construct a single trap.

Main body
1. Use a 4” hole saw drill bit to drill three sets of two holes around the sides of the 19 L plastic water bottle. These will be used to install the funnels.
 - Drill four small holes around each of the 4” holes. These smaller holes will be used to zip-tie the funnels into place.
2. Use a 4” hole saw drill bit to drill a hole in the center of the bottom of the plastic bottle (top of the trap). This hole will be used to insert the lighting unit into the top of the trap.
3. Use a 1” drill bit to drill 4 additional holes in the bottom of the plastic bottle. Nylon webbing will be threaded through these holes and used to secure the lighting unit in place.
4. Cut a small section of 3” PVC (roughly 3” length) to be used as a connector between an ABS toilet flange and a 3” ABS slip fitting female adapter.
 - Use PVC/ABS cement to glue the connector into the toilet flange and into the ABS slip fitting female adapter.
5. Bolt the ABS toilet flange to the bottom of the trap.
6. Drill a hole on either side of the top of the trap and install stainless steel eye bolts with washers, hex nuts, and lock washers. Use 2 hex nuts for each eye bolt - one for either side of the plastic bottle.
7. Drill two small holes on either side of the small openings of the 4” funnels.
 - Install small zip-ties across the small opening of the funnels to reduce the size of organisms capable of swimming into the trap.
8. Drill four small holes around the large openings of the 4” funnels that match the four small holes in the body of the trap.
 - Use these holes to zip-tie the funnels into the main body of the trap.
 - Apply a thin bead of marine caulk around the funnels to ensure that they are securely attached to the trap.

Figure 4. Main body of trap with holes drilled in the side and bottom. Stainless steel eye bolts are used to strap the foam lid and handle to the trap.

Figure 5. Main body of trap with foam float attached and cod end pieces staged for assembly.
Foam floats
1. Cut a sheet of polyurethane foam into 1' diameter rounds.
2. Drill holes in two foam rounds that match the holes drilled in the top of the trap.
 - Glue these rounds together and then to the top of the trap using marine caulk. Make sure that the holes match.
3. Thread nylon webbing with Velcro ends through the 1” holes in the top of the trap and foam - two straps per trap.
4. To make the foam lid, cut identical rectangles out of two foam rounds. These rectangular holes should be large enough for the waterproof box to fit through (roughly 9” x 7”).
 - Use marine caulk to glue these two rounds together.
5. Cover the polyurethane foam floats in 10 mil pipe wrap tape to prevent the foam from breaking and flaking off into the water.

Cod end
1. Cut an 8” length of 3” PVC pipe and drill six 1 3/8” holes in this length of pipe. Before drilling the holes, take into account the overlap of the PVC fittings that will be glued to either end of this length of pipe.
2. Cut a piece of 250 µm mesh screen that is roughly 7” x 7”.
3. Coat the inside of the pipe with quick-set epoxy and carefully glue the mesh screen to the pipe.
4. Drill a small hole in the middle of the 3” PVC cap and install a stainless steel eye bolt with 2 hex nuts and a star lock washer.
5. Use PVC/ABS cement to glue the 3” PVC cap and the 3” ABS slip fitting male adapter to either end of the PVC pipe with the mesh screen.

Light housing
1. Use a 2 ¼” hole saw drill bit to drill a hole in the bottom of the waterproof Pelican box.
 - Carefully sand around this hole to ensure that no plastic fragments interfere with the gasket on the bulkhead fitting.
2. Use a wrench to tightly fasten the polypropylene bulkhead fitting to either side of the waterproof box.
3. Cut a 14” length of 1” clear PVC pipe.
4. Use PVC cement to glue the 1” PVC cap onto one end of the clear PVC pipe and the 1” PVC threaded male fitting to the other end.
5. Wrap Teflon pipe tape around the PVC threaded male fitting and screw it into the polypropylene bulkhead fitting.
 - Ensure that the fitting is fully installed as this is a potential weak point in the waterproof box.
Light unit
1. Cut two 2’ lengths of LED strip lights at the marked cut lines.
2. Solder positive and negative wires to the positive and negative copper dots on the strip lights.
3. Cut a 1’ length of square wooden dowel and attach the two lengths of lights to the four sides of the dowel using the adhesive tape on the back of the lights.
4. Use splice connectors to join the two negative and the two positive wires from the lights together.
 - Use electrical tape to secure the light strips to the dowel and prevent stress from being placed on the wires.
5. Wire the lights and battery to the timer using 22-18 AWG female slide terminals.
6. If heat-shrink wiring connectors were used, apply heat to the terminals and splice connectors to seal the connections.
7. Glue Velcro strips to the lighting unit lid and to the back of the timer to secure the timer to the Pelican box.

ACKNOWLEDGEMENTS
Funding for the development of this monitoring program was provided in part by a U.S. Environmental Protection Agency, Puget Sound Partnership Implementation FY17 grant (Agreement #: PA-01J27601) and a Bureau of Indian Affairs, Rights Protection Implementation Climate Change FY17 grant. We would like to thank Swinomish Indian Tribal Community Fisheries Manager, L. Loomis, for providing support throughout this effort. We would also like to thank A. Shanks, E. Brown, N. Jefferson, K. Mueller and R. Rose for their invaluable guidance, and J. Sones for the Dungeness crab instar photograph. Finally, a special thank you to S. George, K. Hale, T. Harrah, S. Hoh, T. Flannagan, J. Flowers, J. Nevitt, and H. Rooks for help refining volunteer monitoring protocols.
REFERENCES

Shanks AL, Roegner GC, Miller J (2010) Using megalopae abundance to predict future commercial catches of Dungeness crab (Cancer magister) in Oregon. Cal Coop Ocean Fish Inv Rep 51:106–118
APPENDIX A: List of materials and estimated costs

<table>
<thead>
<tr>
<th>Item</th>
<th>Vendor</th>
<th>Cost</th>
<th>Amount needed</th>
<th>Cost per trap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main body</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 L plastic water bottle</td>
<td>Home Depot</td>
<td>13.44</td>
<td>1</td>
<td>13.44</td>
</tr>
<tr>
<td>4” funnel</td>
<td>Restaurant Supply</td>
<td>0.95</td>
<td>6</td>
<td>5.70</td>
</tr>
<tr>
<td>Small zip ties</td>
<td>Hardware store</td>
<td>5.00</td>
<td>12</td>
<td>5.00</td>
</tr>
<tr>
<td>3” / 4” ABS toilet flange</td>
<td>Home Depot</td>
<td>3.11</td>
<td>1</td>
<td>3.11</td>
</tr>
<tr>
<td>3” ABS slip fitting female adapter</td>
<td>Home Depot</td>
<td>4.51</td>
<td>1</td>
<td>4.51</td>
</tr>
<tr>
<td>Cod end</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3” ABS slip fitting male adapter</td>
<td>Home Depot</td>
<td>3.49</td>
<td>1</td>
<td>3.49</td>
</tr>
<tr>
<td>3” x 10’ PVC pipe</td>
<td>Hardware store</td>
<td>15.00</td>
<td>1/15</td>
<td>1.00</td>
</tr>
<tr>
<td>3” PVC cap</td>
<td>Home Depot</td>
<td>2.69</td>
<td>1</td>
<td>2.69</td>
</tr>
<tr>
<td>250 micron nylon mesh screen – ½ yard</td>
<td>Component Supply</td>
<td>16.25</td>
<td>1/10</td>
<td>1.63</td>
</tr>
<tr>
<td>Light unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 m spool waterproof white LED strip lights 60 LEDs/m</td>
<td>Amazon</td>
<td>7.99</td>
<td>1/5</td>
<td>1.60</td>
</tr>
<tr>
<td>½” x 36” square dowel</td>
<td>Hardware store</td>
<td>1.79</td>
<td>1/3</td>
<td>0.60</td>
</tr>
<tr>
<td>22-18 AWG speaker wire</td>
<td>Hardware store</td>
<td>0.37</td>
<td>1 ft</td>
<td>0.37</td>
</tr>
<tr>
<td>22-18 AWG heat shrink butt splice connectors</td>
<td>NAPA</td>
<td>1.19</td>
<td>4</td>
<td>4.76</td>
</tr>
<tr>
<td>22-18 AWG heat shrink female slide terminals</td>
<td>NAPA</td>
<td>0.89</td>
<td>4</td>
<td>3.56</td>
</tr>
<tr>
<td>Programmable timer with 12V DC switch</td>
<td>Amazon</td>
<td>12.00</td>
<td>1</td>
<td>12.00</td>
</tr>
<tr>
<td>Talentcell 12V rechargeable battery 6,000 mAh</td>
<td>Amazon</td>
<td>34.00</td>
<td>1</td>
<td>34.00</td>
</tr>
<tr>
<td>Talentcell 12V rechargeable battery 11,000 mAh</td>
<td>Amazon</td>
<td>64.99</td>
<td>1</td>
<td>64.99</td>
</tr>
<tr>
<td>Light housing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1” x 8’ clear PVC schedule 40 pipe</td>
<td>Grainger</td>
<td>21.40</td>
<td>1/8</td>
<td>2.68</td>
</tr>
<tr>
<td>PVC cap – socket, 1” pipe size</td>
<td>Grainger</td>
<td>0.49</td>
<td>1</td>
<td>0.49</td>
</tr>
<tr>
<td>1” socket connect female x threaded NPT male fitting</td>
<td>Grainger</td>
<td>0.53</td>
<td>1</td>
<td>0.53</td>
</tr>
<tr>
<td>Pelican 1120 protector case with foam</td>
<td>Pelican dealer</td>
<td>26.00</td>
<td>1</td>
<td>26.00</td>
</tr>
<tr>
<td>Polypropylene bulkhead fitting – 1” X 2 ¾”</td>
<td>Grainger</td>
<td>6.65</td>
<td>1</td>
<td>6.65</td>
</tr>
<tr>
<td>* Small combination locks</td>
<td>Hardware store</td>
<td>6.98</td>
<td>2</td>
<td>13.96</td>
</tr>
<tr>
<td>Nylon webbing</td>
<td>Art & crafts store</td>
<td>0.69</td>
<td>5 ft</td>
<td>3.45</td>
</tr>
<tr>
<td>Velcro segments</td>
<td>Art & crafts store</td>
<td>1.19</td>
<td>4</td>
<td>4.76</td>
</tr>
<tr>
<td>Foam float</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyurethane foam sheet 4’ x 8’ x 1 ½”</td>
<td>Hardware store</td>
<td>23.92</td>
<td>1/8</td>
<td>2.99</td>
</tr>
<tr>
<td>Pipe wrap tape – 2” x 100’ x 10 mil</td>
<td>Lowe’s</td>
<td>5.96</td>
<td>1</td>
<td>5.96</td>
</tr>
<tr>
<td>Mooring line</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Self-coiling braided steel security cable – 6’</td>
<td>Grainger</td>
<td>7.30</td>
<td>1</td>
<td>7.30</td>
</tr>
<tr>
<td>* Stainless steel carabiner</td>
<td>Hardware store</td>
<td>2.00</td>
<td>3</td>
<td>6.00</td>
</tr>
<tr>
<td>Line</td>
<td>Hardware store</td>
<td>0.50</td>
<td>3 ft</td>
<td>1.50</td>
</tr>
<tr>
<td>Hardware</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>¼” x 1 ½” galvanized hex cap bolts</td>
<td>Hardware store</td>
<td>0.32</td>
<td>4</td>
<td>1.28</td>
</tr>
<tr>
<td>¼” galvanized flat washers – 20 pack</td>
<td>Hardware store</td>
<td>2.70</td>
<td>1/5</td>
<td>0.54</td>
</tr>
<tr>
<td>¾” galvanized hex nuts – 20 pack</td>
<td>Hardware store</td>
<td>3.15</td>
<td>1/5</td>
<td>0.63</td>
</tr>
<tr>
<td>* 3/16” x 2” stainless steel eye bolt</td>
<td>Hardware store</td>
<td>1.23</td>
<td>3</td>
<td>3.69</td>
</tr>
<tr>
<td>* Wide washers</td>
<td>Hardware store</td>
<td>0.33</td>
<td>2</td>
<td>0.66</td>
</tr>
<tr>
<td>* 10-24 stainless steel hex nut</td>
<td>Hardware store</td>
<td>0.08</td>
<td>6</td>
<td>0.48</td>
</tr>
<tr>
<td>* stainless steel star lock washer</td>
<td>Hardware store</td>
<td>0.08</td>
<td>3</td>
<td>0.24</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>255.21</td>
</tr>
<tr>
<td>Item</td>
<td>Cost</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tools and accessories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 ¼” hole saw drill bit</td>
<td>14.99</td>
<td>Use to drill a hole into waterproof box to install bulkhead fitting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4” hole saw drill bit</td>
<td>24.99</td>
<td>Use to drill holes in sides and top of trap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ¾” hole saw drill bit</td>
<td>17.97</td>
<td>Use to drill holes in cod end, to be covered in mesh screen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1” drill bit</td>
<td>4.00</td>
<td>Use to drill holes in top of trap to thread nylon webbing through</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soldering iron</td>
<td>20.00</td>
<td>Use to solder positive and negative wires to LED lights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire stripper and crimper</td>
<td>18.00</td>
<td>Use when wiring lighting unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Heat gun</td>
<td>26.00</td>
<td>Use to heat shrink electrical terminals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Electrical tape</td>
<td>7.00</td>
<td>Use to secure light strips to dowel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teflon pipe tape</td>
<td>0.69</td>
<td>Use when screwing 1” PVC male adapter into bulkhead fitting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sikaflex marine caulk</td>
<td>8.35</td>
<td>Use to glue foam floats to trap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS/PVC cement</td>
<td>5.40</td>
<td>Use when gluing ABS fittings to PVC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVC primer and solvent cement</td>
<td>9.17</td>
<td>Use when gluing PVC pipe and fittings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quick-set epoxy</td>
<td>5.67</td>
<td>Use to glue nylon mesh screen over holes in PVC cod end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* optional items
APPENDIX B: Light trap monitoring datasheet

LIGHT TRAP MONITORING DATASHEET

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>Time</th>
<th>Samplers</th>
<th>Battery Level</th>
<th>Hours Fished</th>
<th>Weather</th>
<th>Photo</th>
<th>Timer Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S OC PC R</td>
<td></td>
<td>Start Time:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S OC PC R</td>
<td></td>
<td>End Time:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S OC PC R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S OC PC R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dungeness Crab Catch (Required)

- Total Dungeness Megalopae
- Total Dungeness Instars

Other Species Catch (Optional)

- Pagurus Megalopae
- O.U. Megalopae 1
- O.U. Megalopae 2
- O.U. Instars 1
- O.U. Zoea
- Surf Smelt
- Sand Lance
- Salmon (I.D. reverse)
- Gunnel
- Sculpin
- Flatfish
- O.U. Fish (I.D. reverse)
- Amphipod
- Isopod: Kelp
- Isopod: Pill Bug
- Octopus
- Polychaete
- Shrimp
- O.U. #1 (I.D. reverse)
- O.U. #2
- O.U. #3
- O.U. #4

*Specimen Collected

* Preserved Sample; Weather: S = Sunny, OC = Overcast, PC = Partly Cloudy, R = Rain

Data Entry Complete: ________________
LIGHT TRAP MONITORING DATASHEET

Estimate Species Abundance via Subsampling

<table>
<thead>
<tr>
<th>Date</th>
<th>Species</th>
<th>Subsample Count</th>
<th>Subsample Volume</th>
<th>Total Sample Volume</th>
<th>Total Count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Count 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Count 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Count 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subsample Volume = volume of sample examined e.g. 200 mL, Total Sample Volume = volume of the entire sample e.g. 1000 mL;
Total Count = (Average Subsample Count/Subsample Volume) x Total Sample Vol

Daily Identification of O.U. Species (reference reverse page)

<table>
<thead>
<tr>
<th>Date</th>
<th>Species</th>
<th>Stage</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

* Preserved Sample; O.U. = Otherwise Unidentified

Data Entry Complete: ____________
APPENDIX C: Citizen scientist step-by-step guide

Welcome!
The Swinomish Indian Tribal Community (SITC) is using light traps to study the larval abundance of Dungeness crab in northern Puget Sound waters. Light traps are moored from docks and use LED lights to attract larval stages of crab, otherwise known as megalopae. As a citizen scientist volunteer, you will adopt a light trap and regularly collect larval crab samples throughout the Dungeness crab recruitment period (April to September). Thank you for your work to help study this critically important species!

MATERIALS LIST:
- Clipboard with Light Trap Report forms
- Trap ID photo card
- Dish tubs
- Sample jars
- Spoons
- Water bottle
- Charged battery
- “Save a trap” kit

LIGHT TRAP DIAGRAM

RETRIEVING TRAP
1. Unhook the carabiner that attaches the coiled steel cable to the dock.
2. Pull the trap from the water using the rope handle and allow the water to drain through the mesh screen on the cod end.
3. Unclip the weight from the cod end.
4. Remove the foam lid from the top of the trap.
5. Detach the nylon straps from the Pelican case and pull it from the trap, set aside.
6. Pour some water into the main body of the trap to ensure that all the contents have been emptied into the cod end.
7. Unscrew the cod end and dump the contents into the tub.
8. Use the water bottle and/or spoon to rinse any remaining contents from the cod end.

QUESTIONS OR CONCERNS?
Contact Claire Cook at (360) 391-3652 or ccook@swinomish.nsn.us and/or Sarah Grossman at (360) 708-3516 or sgrossman@swinomish.nsn.us
PROCESSING SAMPLE

1. Fill out the trap ID photo card with the site name and date. Place it beside the tub and take a picture of the tub contents with the photo card visible.
2. Use a slotted spoon to remove fish from the sample.
 • Be careful not to discard any Dungeness crab megalopae or instars!
3. Collect the megalopae and instars in a jar labeled with the site name, date, and number of jars collected - in case you use multiple jars.
 • If the sample is very full and/or you are unable to confidently identify the Dungeness crab megalopae, simply pour the entire sample into labeled jars.
4. Record the date, the time the trap was retrieved, whether or not megalopae were present, and whether or not sample jars and photos were collected on the Light Trap Report.
5. Return the rest of the critters to the water.

CHANGING BATTERY

1. Unstrap and open the Pelican case, and unplug the battery.
2. Record the level of charge remaining by noting the number of green dots illuminated on the side of the battery.
3. Plug in the new, fully-charged battery and turn it on.
 • Double check that the battery is loaded into the Pelican case as it is in the image to the left.
4. Close the Pelican case and strap it back onto the trap.

DEPLOYING TRAP

1. Reattach the cod end to the main body of the trap.
2. Strap the foam float to the top of the trap and clip the weight to the eye bolt on the cod end.
3. Lower the trap back into the water, loop the coiled steel cable around the dock and clip it to itself with the carabiner.
4. Record the time that the trap was redployed and note any comments or issues from your visit.
5. Take the labeled sample jars home and put them in the freezer.
6. Be sure to email the picture of the tub contents with the sample label AND the Light Trap Report to Claire at ccook@swinomish.nsn.us.

Don’t forget to plug the battery in when you get home!

SUBMITTING DATA

Please submit Light Trap Reports and images of trap contents within one week of sampling! SITC staff will collect frozen sample jars every 3-4.
APPENDIX D: Citizen scientist light trap report

Site Name:

Date:

Volunteer Names:

Retrieval Time:

Time Deployed:

<table>
<thead>
<tr>
<th>WEATHER</th>
<th>SUNNY</th>
<th>PARTLY CLOUDY</th>
<th>OVERCAST</th>
<th>RAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEGALOPAE</td>
<td>YES</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAR</td>
<td>YES</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLLECTED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAR</td>
<td>LABEL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

BATTERY CHARGE LEVEL:

DOTS LIT / TOTAL DOTS

Fill out the laminated trap ID photo card with the site name and date using the grease pen provided. Place it beside the tub and take a picture of the tub contents with the trap ID card visible.

<table>
<thead>
<tr>
<th>PICTURE TAKEN</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please submit this report and photograph to Claire Cook at ccook@swinomish.nsn.us within one week of your visit! Staff will collect frozen sample jars every 3-4 weeks.